
A Platform Architecture to Support the Deployment of Distributed Applications
Tonghong Li, Andreas Hoffmann, Marc Born and Ina Schieferdecker

GMD FOKUS
Kaiserin Augusta Allee 31

D-10589 Berlin, Germany

Abstract-Deploying a distributed application on the nodes of
a network has undoubtedly been a daunting task, which
encompasses the distribution as well as the configuration of its
components. Deployment and configuration concerns the
placement of software components onto the nodes of a target
environment, their installation, configuration, and instantiation,
as well as the distribution and configuration tasks during the
service usage phase. However, they are not fully addressed by
current CORBA Component Model (CCM). This paper
elaborates on the platform architecture for deployment support
and proposes the necessary extensions to current CCM.

I. INTRODUCTION

Deploying a distributed application on the nodes of a
network has undoubtedly been a daunting task, which is
usually done by writing and manually executing installation
and configuration scripts on hundreds or even thousands of
nodes. Experience shows today that software support is
needed to manage software distribution and configuration in
heterogeneous environments featuring different middleware
products, development tools, and methods. Automating the
deployment process can reduce the software development
 effort and the dependencies on software vendor s
middleware products, and shorten the time to market.

Proprietary solutions for this problem exist already in the
 tools market, such as IBM s Tivoli [1], Microsoft s
 Transaction Server [2], and Microsoft s Management
Console [3]. Though these tools are relatively opened for
 Independent Software Vendors (ISV) plug-ins, they are
targeted to specific environments and therefore present
limitations in heterogeneous environments. Another kind of
proprietary solution for the problem of deploying distributed
applications is represented by the tools coined as Application
Servers, which are usually sold by the Java programming
 language Interactive Developing Environment s vendors.
This kind of tools were born as supporters for the deployment
of Enterprise Java Beans (EJB), thus being restricted to
applications or components developed using Java and the
EJB specification [4].

The CCM recently proposed by the Object Management
Group (OMG) [5] is a comprehensive framework for
deployment, assembling and packaging of CORBA-based
distributed applications. The CORBA component
specification comes with a deployment model that enables
the partial automation of basic deployment tasks, such as
installation, assemblage of components, etc. It includes a
Deployment XML, which provides a couple of means for
expressing configuration and deployment related issues.
Furthermore, it defines a number of platform interfaces to
support the deployment process in terms of Deployment
XML. However, for comprehensive deployment and
configuration support (including run-time reconfiguration),
these are not sufficient.

The EURESCOM project P924 [6] targets concepts,
methods, and notations for the deployment of distributed
applications onto target middleware platforms. It has come up
with a deployment and configuration language (DCL), which
permits the description of configuration and distribution
information for distributed applications. However, to be able
to accomplish the deployment process, target platform
support is necessary. From a more general view this
comprises platform facilities supporting the initial
installation, the configuration and the general management of
components in an efficient, at best automatic way.

This paper elaborates on the platform architecture for
deployment support. It is organized as follows. Section II
gives an overview of our DCL language. Section III
introduces the deployment procedure. Section IV elaborates
our platform architecture. Section V gives some scenarios to
explain how to deploy distributed applications under our
platform architecture. Section VI summarizes our sample
service. Section VII concludes the paper and presents the
issue for further work.

II. DCL LANGUAGE OVERVIEW

In DCL the following representation formats are proposed
[7]:

• a graphical format (DCL/gr),
• a textual format (DCL/pr), and
• an interchange format (DCL/cif).

The semantics and the metamodel of DCL provide the
common foundations for all three. While the graphical and
the textual representation formats are intended to be used by
humans for the creation and visualization of deployment
specifications, the interchange format of DCL is mainly to be
interpreted by tools and middleware platform during the
entire deployment.

The graphical format (DCL/gr) is actually a specialisation
of UML [8]. Therefore a special UML profile is defined for
DCL, by specialising the UML metamodel.

The textual format allows for a user-friendly concrete
syntax with no sophisticated editing tool requirements. This
format might not be as intuitive as the graphical one, but it
can be seen as a lighter means for the creation of DCL
models.

The interchange format for DCL is actually an extended
version of CCM s XML descriptors. It is intended to be the
common interchange format for all kinds of deployment and
configuration specifications between all phases of the entire
deployment process independently from tool vendors and
customer's middleware target environments. The interchange
format of DCL carries all the information needed for

2592

0-7803-7400-2/02/$17.00 © 2002 IEEE

deployment and configuration of distributed applications.

The DCL/gr and DCL/pr can be transformed to DCL/cif by
appropriate translators. The deployment tool and middleware
platform always use DCL/cif for the deployment of
distributed applications.

DCL/cif extends existing CCM XML descriptors, in order
to enable:

• the precise definition of the installation map,
• the embedding of notations for constraints and actions,
• a more general approach for defining properties as well as

requirements on the target environment using the
embedded constraint language,

• means for the definition of dynamic properties to be
monitored at run-time,

• the definition of rules for run-time re-configuration.

DCL/cif defines two additional descriptors: environment
DTD and node properties DTD. The environment DTD
describes the overall structure of a target environment in
terms of nodes and links between nodes as well as overall
capabilities of the platform, while the node properties DTD
focuses on the description of the properties and capabilities
of a certain node of the target environment.

III. DEPLOYMENT OVERVIEW

 Because a distributed application that is ready for
deployment is in the form of component assembly archive
 [5], we use the term assembly type to address a type of
distributed application. An assembly package consists of a
component assembly descriptor (CAD) and a set of
component packages and property files. The CAD contains
information about which components make up the assembly,
how those components are partitioned, how they are
connected to each other. A component package is a
specialization of a general software package, which maintains
one or more implementations of a component.

During the deployment procedure, the deployment tool has
to open the assembly package and read and parse all the
XML descriptors provided by the vendor of the shipped
service. Furthermore, it needs to interact with the middleware
platform to get its required information like target
environment and use platform specific services to accomplish
the deployment process. In summary, it has to perform the
following steps:

1. Identification on which hosts the components of the
distributed application are to be installed (installation map)
as well as definition of reconfiguration rules. This
information will be added to the CAD of assembly package.

2. Installation of component implementations on each node
of the platform according to the installation map.

3. Instantiation of components on particular nodes.

4. Connection of component instances and performance of
an initial configuration as specified in the CAD.

5. Supervision of the complete application execution
according to rules contained in the CAD and potential

runtime re-configuration of single component or the entire
application topology.

From the above description, it is obvious that middleware
platform should provide the capabilities of installation and
instantiation of components, management of properties of
platform and components, and reconfiguration of deployed
application according to the included rules if the whole
deployment procedure can be automated.

IV. PLATFORM ARCHITECTURE

In order to support deployment and configuration of
distributed applications specific platform interfaces are
needed. A first step towards this deployment support is
proposed by CCM, which defines a number of platform and
application interfaces. However, it only supports the partial
automation of basic deployment tasks, such as installation,
assemblage of components, etc. Thus, we define a more
sophisticated architecture by extending the interfaces
proposed by CCM. In the following interface description, we
will point out if the interface comes from CCM.

A. Description of the Interfaces

• NodeManagement
 This interface is used to obtain a node s properties in

terms of node properties DTD. It also provides a set of
 operations to allow users to get and set a property s value.
A property is two tuples of <property_name,
property_value>. The property_name is a string that names
the property, while the property_value is of type any and
carries the value assigned to the property.

Moreover, it provides a operation to execute all activities
related to loading a component, for example, creating a
component server, creating a container within the server and
installing a home object within the container. In CCM
specification, these works are completed with the help of a
set of objects on each node, which is rather complicated [5].
In our implementation, each component provides an
executable program to finish this work. What this operation
has to do is to create a new thread or process and launch the
execution of the program in this thread or process.

• ExtComponentInstallation
In order to support an installation capability CCM

introduces the specification of the interface
ComponentInstallation, which is used to install, query,
and remove component implementations on a single node.
However, it is not specified how the component package is
uploaded. The ExtComponentInstallation interface
extends the ComponentInstallation interface by adding an
upload operation.

• ConstraintMonitor
 This interface represents a run-time configuration rule. A

rule is composed of two parts: a run-time constraint as the
precondition for an action, an action to be automatically
performed if the precondition of the action is violated. This
interface performs the tasks of evaluating the constraint and
executing the corresponding action when the constraint is
violated.

2593

Since there are a couple of specification and scripting
notations, which seem to be suitable for specifying
constraints and actions, it has been decided to embed such an
existing notation rather than to develop a new one in DCL.
The advantage of this open approach is that the
implementation of a proper tool support is easy to provide,
because the interpreters for these notations can be freely
obtained. During the computation of DCL/cif specification,
the appropriate external interpreter will be invoked for the
evaluation of constraints and the execution of actions.

Currently, the Object Constraint Language (OCL) [8], Perl
[9] and Python [10] are regarded to be suitable for embedding
into DCL/cif. In our opinion, the most preferred language is
Python [10]. This is due to the following reasons: (1) Python
is a powerful scripting language for nearly all object-oriented
concerns, it provides proper means for describing properties
and constraints as well as user-defined actions. (2) OMG has
defined and already standardised a mapping from Python to
CORBA. Hence, it is possible to refer to CORBA-interfaces
within user-defined actions.

The following rule is excerpted from our sample service
discussed in section VI. This rule will be evaluated every 10
seconds. In case that a node where one of the philosophers
runs has a load higher than 90 percent, then an action is
performed which writes a message to a control window.

<rule name="PhilosopherRule">
<condition language="python" interval="10">

::$node.get_property_value("CPULoad"
).value() > 90

</condition>
<action language="python">

::DemoReport.notice("$instance:
critical load on $node")

</action>
</rule>

There are two approaches to evaluate constraints. One
adopts the push model: first setting the trigger events,
evaluating the constraint only when the events happen. This
needs the support from the platform, which should provide a
mechnism to notify the client in case a property value has
changed. The other uses the pull model : evaluating the
constraints in the specified time, requesting the needed
property values from the platform during the process of
constraint evaluation. For simplicity, we only use pull model
for contraint evaluation in our prototype.

Before the evaluator of the selected scripting language is
invoked, the constraints and actions have to be translated to
an expression that is interpretable by that evaluator. The
transformation is done in two steps: (1) replacement of the
keywords: $instance and $node by the instance name and the
name of the node the instance is assigned to, (2) translation of
scopes to CORBA interface via the name service.

• ConstraintMonitorFactory
The interface is a factory for ConstraintMonitor

interfaces. It is used to create ConstraintMonitor instances.

• DPEManagement
This interface is used to manage

AssemblyTypeManagement interfaces, including
creation, registration, finding and listing.

• AssemblyTypeManagement
This interface is the management interface for a certain

assembly type. It comprises the installation and deinstallation
of implementation codes according to the assembly
description of that assembly type, and the management of
real assembly instances.

• Assembly
The interface is taken from the CCM specification. It

represents an assembly instance. It is used to build up and
tear down a distributed application. Building the assembly
means that it is going to instantiate all of the components in
the assembly and create connections between them. Tearing
the assembly down means removing all connections and
destroying the components in the assembly.

• AssemblyFactory
The interface is taken from CCM, which is used to create

Assembly instances.

B. Description of the Components

AssemblyManager

NodeManager

NodeManager

DPEManager AssemblyTypeManager

components
components

Fig. 1. One scenario of platform architecture.
In our platform architecture there are four components:

DPEManager, NodeManager, AssemblyTypeManager,
and AssemblyManager. NodeManager has to be installed in
all nodes of middleware platform. Depending on the
 customer s requirements and network status, DPEManager
can be placed either in a specific node that is responsible for
the management of the entire middleware platform or in any
node of the system. AssemblyTypeManager and
AssemblyManager are created dynamically. During the
deployment procedure, only one AssemblyTypeManager is
created for one assembly type, which is responsible for
installing and uninstalling the software package of this
assembly type. In order to make this type of assembly
running, the AssemblyTypeManager has to instantiate a
AssemblyManager, which is responsible for the
management of the running assembly instance. An
AssemblyTypeManager can instantiate one or more
AssemblyManagers. Figure 1 shows one scenario of our
platform architecture.

• DPEManager
The DPEManager is a component responsible for the

management of the platform. There is exactly one entity of
DPEManager running on a platform each time. A
DPEManager supports the interfaces DPEManagement,
ConstraintMonitorFactory, and AssemblyFactory.

2594

The DPEManager is the central (initial) access point for
all applications and external tools to the platform. It provides
functionalities of automated environment detection and code
upload. In addition, it is responsible for instantiation of the
AssemblyTypeManagers and transmission of component
assembly package to the AssemblyTypeManager.

• NodeManager
On each node of the platform a NodeManager is running.

Its supported interfaces are ExtComponentInstallation
and NodeManagement. It provides access to node specific
information and services. In addition, it is responsible for
code uploading, controlling and accessing properties of that
node.

• AssemblyTypeManager
The AssemblyTypeManager is responsible for the

installation and de-installation of an assembly type. It
supports the interface AssemblyTypeManagement and
uses the interface ExtComponentInstallation.

Since it controls code upload to nodes, it needs to have
XML parsing facilities to read the installation map contained
in the XML descriptors. Furthermore, it stores all rules for
run-time re-configuration.

• AssemblyManager
It supports the interface Assembly and requires a set of

interfaces for component instantiation and constraint
evaluation.

The AssemblyManager manages a single running instance
of an assembly type. It is responsible for the instantiation and
initial configuration set-up for all components of that
assembly. Furthermore, it starts the permanent evaluation of
run-time re-configuration rules.

The management of a running assembly instance
encompasses: (1) registration of dynamically created
components, (2) migration control of single components, (3)
tearing down, stopping and resuming of running Assemblies.

V. COMMON SCENARIOS

To facilitate better understanding of the interaction
between those interfaces specified in the section IV, the
subsequent sections contain diagrams illustrating important
processes concerning deployment and configuration.

A. Component Installation

Figure 2 is the diagram of component installation, which is
explains as follows:

1. The AssemblyTypeManager calls the upload operation
on the ExtComponentInstallation interface provided by
the NodeManager. This operation results in uploading the
software package containing the component implementations
to the node where the NodeManager instance belongs. After
this call the returned identifier can be used to identify this
package for the purpose of installation of component
implementations.

2. The AssemblyTypeManager calls the install operation
on the ExtComponentInstallation interface. Within this

operation the previously uploaded package is referred and a
certain implementation specified by its id is installed on the
node.

<<Component>>
AssemblyTypeManager

<<Component>>
AssemblyTypeManager

<<Interface>>
ExtComponentInstallation

upload ()
get_implementation ()

<<Interface>>
ExtComponentInstallation

upload ()
get_implementation ()

<<Component>>
NodeManager

<<Component>>
NodeManager

provides

1. upload ()
2. install ()

Fig. 2. Component installation.

B. Component Instantiation

Figure 3 is the diagram of component instantiation, which
is explained as follows:

<<Interface>>
MyComponentHome

create ()

<<Interface>>
MyComponentHome

create ()

<<Component>>
MyComponent

<<Component>>
MyComponent

3<<Component>>
AssemblyManager
<<Component>>

AssemblyManager

<<Component>>
NodeManager

<<Component>>
NodeManager

<<Interface>>
ServerActivator

create_component_server ()

<<Interface>>
NogeManagement

load_component ()

provides provides

1. get_implementation ()

4 create ()

<<Interface>>
ExtComponentInstallation

upload ()
get_implementation ()

<<Interface>>
ExtComponentInstallation

upload ()
get_implementation ()

2. load_component ()

5.

Fig. 3. Component instantiation

1. The AssemblyManager calls get_implementation on the
ExtComponentInstallation interface of the target node. It
gives the id of the installed implementation according to the
assembly description and obtains the location of installed
implementation.

2. The NodeManagement interface of the target node is
called.

3. The component implementation is loaded into the
container and a Home instance for this component is created.

4. The AssemblyManager calls the create operation on the
Home interface.

5. A component instance is created and its reference
returned to the AssemblyManager.

2595

C. Deployment Scenario

Figure 4 is diagram of deployment scenario, which is
explained as follows:

Deployment Tool

<<Interface>>
DPEManagement

create_assembly_type ()
get_assembly_type ()
unregister_assembly_type ()
get_assembly_types ()
update_assembly_type ()

<<Interface>>
DPEManagement

create_assembly_type ()
get_assembly_type ()
unregister_assembly_type ()
get_assembly_types ()
update_assembly_type ()

<<Interface>>
AssemblyTypeManagement

install ()
instantiate_assembly_manager ()
de_install ()
update ()
destroy ()
get_assembly_manager ()
destroy_assembly_manager ()
get_assembly_managers ()

<<Interface>>
AssemblyTypeManagement

install ()
instantiate_assembly_manager ()
de_install ()
update ()
destroy ()
get_assembly_manager ()
destroy_assembly_manager ()
get_assembly_managers ()

<<Component>>
AssemblyTypeManager

<<Component>>
AssemblyTypeManager

<<Component>>
DPEManager

<<Component>>
DPEManager

1. create_assembly_type ()

2.

3. install ()
4. instantiate_assembly_manager ()

<<Component>>
AssemblyManager
<<Component>>

AssemblyManager

<<Interface>>
Assembly

build ()
tear_down ()
get_state ()

<<Interface>>
Assembly

build ()
tear_down ()
get_state ()

5.
6. build ()

provides

providesprovides

Fig. 4. Deployment scenario.

1.The deployment tool calls create_assembly_type on the
DPEManagement interface of the actual platform
(DPEManager). It provides the XML description of the
assembly type and obtains a reference of the
AssemblyTypeManagement interface of that type.

2.An AssemblyTypeManager instance is created
providing the implementation of
AssemblyTypeManagement. In the process of
create_assembly_type operation, reconfiguration rules for
this assembly type are parsed from the XML file and are
stored in a local repository.

3. The deployment tool calls install on the
AssemblyTypeManagement to install the proper
implementation codes on the platform. The installation
details are described in the component installation scenario.

4. The deployment tool calls instantiate_assembly_manager
on the AssemblyTypeManagement object.

5. An AssemblyManager instance is created having access
to the XML description of the assembly type, which serves as
a recipe for the actual assembly instance creation.

6. An assembly instance is created by calling the build
operation on the AssemblyManager object. The component
instantiation is carried out in the build operation. In the
process of build operation, the AssemblyManager also looks
up the repository in the AssemblyTypeManager in order to
obtain all re-configuration rules for this assembly type. For
each rule, it calls ConstraintMonitorFactory once to
generate the corresponding ConstraintMonitor object.
After that, the assembly instance is running. The platform

continually monitors its execution, determining whether or
not it should be reconfigured based on the evaluation of its
constraints.

VI. SAMPLE SERVICE

This sample service that has been selected to demonstrate
our prototype implementation (deployment tool and platform
 support) is the classical dining philosophers problem
[11]. The example scenario includes three different
components Philosopher, Fork and Observer, which can be
distributed across the target network. For each component,
we provide two implementation versions: Window NT and
Linux, which are packed in a component package.

 A configurable number of philosophers are sitting on a
round table; on the table are a finite number of forks.
Philosophers perform actions: thinking, eating and sleeping.
They do not need any resources in order to think or sleep, but
they need two forks for eating, one for the left hand and one
for the right hand. Therefore, before starting to eat, a
philosopher tries to get the two forks, which are configured to
be next to him. An observer will be notified by all
philosophers in the case of an activity change, i.e., at the time
a philosopher starts eating, starts thinking or starts sleeping.
Furthermore, the critical state of getting hungry is notified to
an observer as well.

VII. CONCLUSION

With the increase of the complexity of today's distributed
applications, it is of paramount importance to enable the
automation of the entire deployment process of distributed
applications. In this paper we extend platform interfaces
proposed by CCM to achieve this target. The work here has
been influenced, and, consequently, evolved around the
CORBA Component Model.

REFERENCES

[1] IBM, A Project Guide for Deploying Tivoli
 Solutions , http://www.redbooks.ibm.com.

[2] Jennings, R., Microsoft Transaction Server 2.0 ,
SAMS Publishing, 1997.

[3] Microsoft Corp., Microsoft Management Console
 Overview , 1999.

[4] Sun Microsystems Inc., Enterprise JavaBeans™
 Specification , v1.1, Preliminary version, 1999,
http://www.javasoft.com.

[5] OMG, CORBA components Volume 1 , June 1999,
orbos/99-07-01.

[6] EURESCOM P924, http://www.eurescom.de.
[7] EURESCOM project P924, Deliverable D2, Notation

 and Semantics for Deployment and Configuration ,
June, 2001.

[8] OCL: The Object Constraint Language, http://www-
4.ibm.com/software/ad/standards/ocl.html.

[9] Perl Mongers, http://www.perl.org/.
[10]PYTHON, http://www.python.org/.
[11] EURESCOM project P924, Deliverable D5, Process

Evaluation Results, Achievements and Project
 Conclusions , July 2001.

2596

http://www.redbooks.ibm.com/
http://www.javasoft.com/
http://www.eurescom.de./
http://www-4.ibm.com/software/ad/standards/ocl.html
http://www-4.ibm.com/software/ad/standards/ocl.html
http://www.perl.org/
http://www.python.org/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

